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SUMMARY

A method of designing a self-adaptive missile guidance system is
presented. The system inputs are assumed to be known in a statistical
sense only. Newton's modified Wiener theory is utilized in the design
of the system and to establish the performance criterion. The missile is
assuned to be a beam rider, to have a g limiter, and to operate over a
flight envelope where the open-loop gain varies by a factor of 20. It is
shown that the percent of time that missile acceleration limiting occurs
can be used effectively to adjust the coefficients of the Wiener filter.
The result is a guidance system which adapts itself to a changing
environment and gives essentially optimum filtering and minimum miss
distance.

INTRODUCTION

The analytical design of missile guidance systems is in general
complicated by many factors. Three of the most troublesome factors are
the random character of the input signals, the inherent g limitation
of the missile, and the wide variation in open-loop gain of the system.

The first of these three factors, the random character of the input
signals, clearly suggests that the design should be carried out on a
statistical basis. Stewart (ref. 1) was the first to report on the statis-
tical design of a beam-rider missile guidance system. This was an appli-
cation of the classic paper by Wiener (ref. 2). Stewart's initial effort
(ref. 1) showed one method of approximating the ideal Wiener filter. It
also illustrated the fact that a considerable reduction in mean~-squarc miss
distance could be obtained by using statistical design methods rather than
transient response methods.

The second design problem is created by the inherent g limitatiocn
of the missile and is obviously nonlinear in character. A direct analyti-
cal approach to this problem is extremely difficult because of the lack of
an optimum general nonlinear design method. However, Stewart (ref. 3)
applied the modified Wiener theory, which was suggested by Newton (ref. Ly,



to this problem. This was an indirect approach because it depended upon
placing a constraint on the mean-square acceleration rather than the
actual acceleration of the missile., Under certain conditions, this
indirect approach has proved to be a very useful design tool. Using
Newton's method, Stewart, et al. (ref. 5), showed that the three most
important factors affecting miss distance are target acceleration, glint
noise, and the ratio of missile acceleration to target acceleration, He
also showed that there is only a small increase in miss distance due to
missile dynamics. Thus, for purposes of analysis, the missile can, in
general, be treated as a simple gain constant, the value of which is
dependent upon Mach number and altitude.

The third design problem considered is created by the large variation
in the open-~loop gain of the system. The predominant cause of this gain
variation is the large change in dynamic pressure, q, which the missile
encounters over its flight envelope. The fact that the controlled system
(i.e., missile) changes complicates the problem to a large degree and also
focuses attention on the need for a self-adaptive guidance system. Con-
siderable effort has recently been expended on the prcblem of open-loop
gain variation in the design of self-adaptive autopilots for aircraft
(ref. 6). Some of the concepts which have been useful in the design of
the self-adaptive autopilots will be utilized here, For example, interest
will be centered upon the use of internal measurements of system dynamic
performance to effect continuous adjustment of the controller parameters.
Optimum operation of the system, as defined by a predetermined performance
criterion, will be the primary design objective.

Thus, it is the scope of this paper to consider the design of a
simplified beam~rider missile guidance system where the inputs are known
in a statistical sense, where saturation (¢ limiting) exists, and where
the open~loop gain changes as a function of dynamic pressure. A method
is presented for designing systems that will automatically adjust the
Wiener filter part of the guidance system as a function of the percent
of time of acceleration limiting. The result is a system that is self-
adaptive; that is, the system automatically adjusts itself in such a
manner that essentially minimum mean-square miss distance results even
though the gain of the missile varies over a wide range.

NOMENCIATURE

ay missile acceleration, ft/sec®

ame missile acceleration command signal, ft/sec2
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aMp

aMI,

D(s)

KM

KG(s)

IM
YN

JT

missile acceleration, ft/sec2 rms (bar indicates rms quantity)

missile acceleration 1limit, ft/sec2 (aML = maximum value of
ay = 20g)

optimum Wiener filter transfer function (s 1is complex
variable, o + jw)

acceleration of gravity, 32.2 ft/sec?
open-loop gain of Wiener filter
open-loop gain of missile

open~-loop transfer function of optimum Wiener filter and
missile combination

magnitude of white noise spectral density, ft2-sec
numerator coefficients of optimum Wiener filter
denominator coefficients of optimum Wiener filter
dynamic pressure, lb/ft?

input signal to servo which adjusts Wiener filter
(percent time limiting)/100

reference signal in percent time 1imiting detector
displacement of missile from reference, £t
displacement of radar beam due to noise, ft
displacement of target from reference, t
acceleration of target, ft/sec?

control surface deflection, deg

system error signal, yp - Y ft

ms error (or rms miss distance), £t rms

apparent error, yy + yr - yM» ft

power spectral density of "ohite" radar noise, ft2-sec

power spectral density of target displacement, ft2-sec



DESCRTIPTION OF THE PROBLEM

Guidance Problem

Stewart (ref. 1) has shown that a beam-rider guidance system can be
represented by the block diagram of figure 1 if certain simplifying
assumptions are made. The inputs to the system are the target position,
yp, and the radar glint noise, yy. The output of the system is missile
position, yym. The error of the system, €, is a quantity which cannot be
measured because yp and yy actually come in at the same point and are
physically inseparable. However, the error €, which can be expressed as
miss distance in feet, is the quantity that we desire to minimize through
proper design. The apparent error, €g, is the only error quantity that
can be physically measured. It is seen that eg = Yo + ¥y - Ym-

It is assumed that the quantities yy and yp are known only in a
statistical sense and that they are uncorrelated. To be more specific,
units and input magnitudes have been chosen for design purposes so that
the power spectral densities of the noise and target position are given,
respectively, by

oyy(s) = N, a constant
= 100 ft2 sec (1)
829.L4
QYTYT(S) = 947 ft2 sec (2)

s*(0.16 - 53

It is apparent that the noise signal is assumed to be white noise with a
constant spectral density. The value of the noise given in equation (1)
corresponds approximately to glint noise from a medium sized bomber. The
spectral density of the target signal, yp, has been derived from the
assumption that the target maneuvers laterally with a maximum acceleration

of 1lg first in one direction, then in the other. Thus the target accelera-

tion signal is a rectangular wave of *1g with zero crossings which have
a Polsson distribution and an average period of 5 seconds.

The missile is also assumed to have a velocity advantage over the
target. Thus a hit will be assured if the error in following the =*lg
random maneuver of the target is made small enough. This error can never

be zero because of the noise which contaminates the input signal. However,

the analytical design technique (modified Wiener theory) used in this
report does yield systems which have a smoothing effect on the noise; that
is, the effect of the noise is minimized by proper design.

It should be noted that the above assumptions are essentially the
same as those used by Stewart in previous beam-rider studies (refs. 1, 3,
and 5). A minor variation, however, occurs in the form of the power
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spectral densities of the target maneuver and the noise as a result of
using slightly different definitions of the Fourier and inverse Fourier
integrals.

The main justification for using the previously described inputs is
that they can be described statistically in convenient mathematical forms.
However, they are also believed to be good approximations for this design
problem.

Figure 1 shows that the apparent error, €g, is the input to the
Wiener filter, D(s). The function of D(s) is to provide the desired
filtering and also stability to the over-all system. Initially D(s) is
considered as a linear network. This restriction will be removed later.
The output of D(s) is the missile acceleration command signal, ayp,?t
which is the input to the missile-autopilot combination; & 1is the control
surface excursion; and the #*I 1limits on the control surface servo indi-
cate that control surface excursions are limited. For design purposes,
it is assumed that the acceleration of the missile is limited to *20g
by the structural load limit of the missile. The open-loop gain of the
missile, Ky, will be allowed to vary as a function of dynamic pressure, Q.
The range of variation of Ky will be from 20 to 1 ft/secz/degree and the
servo limit, L, will be assumed to be 32.2°.

Missile Autopilot Problem

The missile autopilot block shown in figure 1 is a much simplified
approximation to a real system. Consider the slightly more complicated
version shown in figure 2(a). The control reqguirements of the autopilot
can now be defined as follows:

(a) If ayp > 20g and KML > 20g, then apyy, = 208
MC M ML

(b) If aye < 20g and KmL > apmo, then ay = aymp

(c) If ay < 20g and KyL < ayp, then ay = Ky

To meet these requirements, the autopilot must provide a transfer function,
aNMaMC: which is independent of the gain, Xy, in the linear region;
furthermore, it must 1limit the maximum acceleration of the missile to 20g,
the assumed structural load limit. It can be seen from figure 2(a) that
the product of missile gain, Ky, and the limit level, L, is the maximum
maneuvering capability of the missile. If KmL > 20, the missile can
exceed the structural load limit. Requirement (a) prevents this cccurrence.
The fact that Ky will be allowed to vary by a factor of 20 adds consid-
erable difficulty to the problem of meeting the above autopilot control
requirements. However, McLean and Schmidt (ref. 7) have recently shown

1Tt should be noted that the units of ay, ayp, and ayy, are given in
ft/se02 in figure 1 and subsequent figures. However, for convenience, all
acceleration quantities in the text and also in the figures will be given
in gravitational units or g's.



that the effect of gain changes In the controlled element (missile) can
be reduced by means of a very high gain in the forward loop. Their
solution is shown in figure 2(b). A study shows that the configuration
in figure E(b) meets the requirements previously set forth. Furthermore,
it is apparent that the entire missile autopilot can now be treated as a
unity gain limiter with variable 1limits rather than considered as a fixed
limit level and a changing gain, Kym. Viewed in this manner, figure 2(b)
is equivalent to that shown in figure 2(0). The limit level, apmg,, i
variable from 1lg up to 20g, the assumed structural load limit.

This treatment of the missile autopilot is admittedly quite simple.
The dynamics of the missile, instruments, servo, etc., certainly must be
considered in any practical system; however, it is believed that the high
gain system described in reference 7, if properly designed, could result
in a missile autopilot which has the property of giving a transfer func-
tion, apm/amg, which is independent of flight conditions in the linear
region. The model of such an autopilot might then be reasonably
approximated by the limiter of figure 2(c), followed by a linear, time-
invariant, transfer function.

DESIGN OF THE GUIDANCE SYSTEM

In view of the above discussion concerning inputs, limits, and
autopilot design, the guidance system design problem can be restated as
follows. Design the controller of figure 3 so that the mean-square
error, €, will be minimized when the statistical inputs are given by
equations (l) and (2) and the limit level, apy, varies by a factor of 20,

The method of design used in this paper relies mainly upon Newton's
modified Wiener theory. Because of this, the limit level apg, can not
be used explicitly in the design. Instead, design of the controller is
effected by placing a constraint on the mean-square acceleration of the
missile @yp? in the classic manner. It will be shown that if the design
value of ayp® 1s too large, the system becomes unstable for small values
of limit level ayg. Conversely, if the design value of ayp= 1s small,
one has unnecessarily large &2 for the large values of limit level, aML,-

It will be shown in the sequel that the value of design acceleration
ayp should vary as a function of the limit level, ayy, in order to obtain
the optimum response (minimum €2). ©Since we are interested in a rather
large range in limit level, it is obvious that the values of ‘ayp chosen
for design purposes will also span a large range. Furthermore, each value
of ayp defines a unique controller or Wiener filter, D(s). Hence, for
the guidance system to operate, it will be necessary to change the con-
troller with limit level. There are at least two methods of accomplishing
this: (l) Measure the outside environment (e.g., q) and program the con-
troller to change as apg, changes with the enviromment; and (2) measure
the dynamic performance internally (e.g‘, percent of time that the servo
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of figure 1 is at is maximum) and use the internally measured signals to
adjust D(s) continuously in an optimum fashion.? Both methods yield
essentially the same response when the inputs are restricted to those
described by equations (l) and (2). However, the second method will be
concentrated upon in this paper because 1t yeilds a system that is superior
for certain deviations in the magnitude of these statistical inputs. In
this sense, the system adapts itself to both changes in missile open-loop
gain and inputs.

Classical Modified Wiener Design

The initial step in the design procedure is to design several optimum
systems, corresponding to various points in the flight regime, by conven-
tional Newton modified Wiener design theory and then calculate the rms
error for each of the optimum systems. Therefore, four optimum linear
systems having the same statistical inputs, but different mean-square
acceleration constraints, were designed.® In all four cases it was
assumed that the rms acceleration of the missile would be one-half the
acceleration capability for that particular point in the flight regime.
Since for structural reasons the peak acceleration of the missile has
been fixed at 20g, the rms design acceleration @yp corresponding to
this case is 10g rms. The other three designs were based on ayp = 10,
L, and 3g with corresponding rms design accelerations of &yp = 5, 2, and
1-1/2g rms. The choice of the design acceleration, @yp, to be one-half
+the acceleration available, ayy,, at each point in the flight regime is
rather arbitrary; that is, no exact rule exists for selecting the design
+me acceleration as a function of the peak acceleration capability. The
hypothesis has been made that éﬁﬁyaML = 1/2 is a good choice because
it can be shown that the acceleration of the missile, ay, will be limited
approximately 4.56 percent of the time (see appendix). In other words
the response will be essentially linear when aIp/em, = /2.

A1l four of the optimum linear systems, discussed above, have
open-loop transfer functions of the same form. This transfer function is
given in general terms by

Kp(pos? + pys + 1) (3)

sZ(qss3 + q2s2 + q1s + 1)

Ka(s) =

2TMhe fact that internal measurements of dynamic performance are used
to adjust the controller to compensate for changes in missile gain leads
to the viewpoint that the guidance system is self-adaptive in nature.

SThe caleulations involved in the analytic design of optimum systems
are considered redundant to this paper. For examples of these calculations
+the reader is referred to the early works of Stewart (refs. 1 and 3) and
to the particularly lucid description of the method given by Newton (ref. 8)



Table I shows how the parameters of the Wiener filter, D(s), in
equation (3) vary as a function of the design acceleration, aMD'4 The
block diagram for the optimum systems is then given by figure 4.

The rms error corresponding to each of the four optimum systems can
now be obtained. It can either be calculated by using equation (3) as
the optimum linear system and standard integral tables (ref. 8) or it can
be measured on an analog computer by simulating the system shown in fig-
ure 4. The calculated rms errors for these systems are given in figure 5.
Furthermore, simulation studies on an analog computer checked these points
to well within the expected engineering tolerances when the limit level
(iaML in fig. 4) was set equal to twice the rms design acceleration, G
in each case.

Analog computer studies were also made to determine the effect of
the limit level on rms error for each of the four optimum systems. The
results of these studies are shown in figure 6. For comparison purposes
the curve of figure 5 is also plotted in figure 6. Thus the performance
of linear systems, given in figure 5, is compared to that of nonlinear
systems where the nonlinearity is saturation.

Inspection of figure 6 reveals that a design based on Eﬁﬁ/aML = 1/2
does not necessarily yleld the minimum rms error when the system has a
physical limiter. For example, consider points A and B in figure 6.
These points correspond to two systems which have the same acceleration
limit, t, amp = 6g. Point A corresponds to an optimum system design based
on ayp = 3g rms (aMD/aML = 1/2) and point B corresponds to an optimum
design based on aMD 5g rms (aND/aML = )/6) However, the rms error at
point A is 28 feet rms and at point B it is 25.5 feet rms. At point A the
system is operating essentially as a linear system because saturation
occurs only a small percentage of the time (approximately 4.56 percent) .
At point B the system operation is nonlinear and saturation occurs approx-
imately 23 percent of the time (see appendix). Thus it is obvious that
system performance can be improved (in one case, at least) by simply
forcing limiting to occur a greater percentage of the time than is required
for linear response.

Stability Studies by Root Locus Method

Booton, et al. (ref. 9), suggested a method of calculating the rms
error curves of figure 6. The method depends upon the fact that a limiter
can be treated as an equivalent gain which is a function of Eﬁﬁ/aML.

This concept of treating a limiter as an equivalent gain suggests the use
of root locus plots of the four optimum systems as an aid in analyzing the
problem. Root loci of the four optimum systems are shown in figure 7.
Table I shows that there is a particular value of gain associated with each

4 . R . . R , . .
The classic Wiener design (1.e., infinite acceleration limits) is
also given for comparison purposes.
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optimum linear system. For aypy = 10g rms, Kp = 4.45; for aMp = 5g rms,
Kgp = 3.25; for ayp = 2¢ rms, K = 1.15; and for ayp = l—l/2g rms,

KF = 0.50. These particular values of gain fix the closed-loop poles for
the respective systems and at these values the systems will yield the
minimm rms error for the assumed inputs. Note, however, (see fig. 7(a))
that as the gain of the system designed for &ayp = 10g rms is reduced
from the design value of 4.U5 to 3.25, 1.15, and 0.50 (corresponding to
the gains of the other optimum systems) , the system actually becomes
unstable. Thus it is apparent that for stability reasons alone it is
necessary to change the pole-zero locations of the filter when the forward
gain of the system is reduced by limiting. A composite plot of the closed-
loop pole~zero locations of the four optimum systems shows how the poles
and zeros should vary as the equivalent gain is reduced in order to main-
tain optimum linear response (minimm rms error). This is shown in fig-
ure 8. Note that one pair of complex poles and the real pole are fixed

in the s plane and do not depend upon 3yp. The complex zeros and the
other pair of complex poles do, however, vary as a function of ayp in
an orderly manner. Inspection of the root loci (fig. 7) in the neighbor-
hood of the dominant poles (i.e., those nearest the origin) shows that the
optimum systems do not all have the same relative stability. For example,
figure 9 shows a composite root locus plot of the dominant poles of the
four optimum systems. The gains have been normalized for each system so
that the values of gain shown correspond to a per unit of "design value

of gain" in each case. Note that the systems designed for the lower values
of Eﬂﬁ are legs sensitive to a reduction in gain than those designed for
the higher values of ayp. Thus it is obvious that the increase in miss
distance (rms error) as the limit level is lowered (see fig. 6) is in part
due to a reduction in stability; and furthermore, the degradation in
performance is a function of the design acceleration, ayp- It may be
recalled that figure 6 showed that system performance could be improved
by simply forcing limiting to occur a greater percentage of the time than
is required for linear response (i.e., 23 percent rather than 4.56 percent
of the time for the case where ayg = 6g).

Design of the Self-Adaptive Loop

Previous considerations have shown that it is desirable to have a
control system which measures the percent of time limiting. Furthermore,
the control system should adjust the modified Wiener filter parameters in
such a manner that the percent of time limiting is the optimum for the
particular value of app. A method of doing this is shown in figure 10.

Switch S 1is closed when ayo > aMmp; thus, X 1s equal to percent
time limiting per 100 (Where X is equal to time average value of x) .
Note that x 1is compared to the reference y and the difference drives
a servo which adjusts the parameters of the Wiener filter according to
figure 11. TFigure 11 was derived from the design data given in table I.
The signal w was arbitrarily chosen to be a linear function of the rms
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design acceleration, ayp. Thus the points in figure 11 where w = O and

w = 1 correspond, respectively, to ayp = 1.5g rms and &yp = 10g rms;

and the intermediate values of w between O and 1 correspond to optimum .
modified Wiener design where &ayp lies between 1.5g and 10g rms.

With the signs shown in figure 10, if x >y the servo adjusts the
parameters of the filter toward a lower ayp design. Conversely, if
x <y the servo adjusts the parameters toward a higher ayp design. Thus
the servo seeks a null where x = y, the point where the system has a
constant percent time limiting. Since x can have only the values of one
or zero, the servo hunts continuously about the quantity vy.

Tests were made of the complete system on an analog computer with
the statistical inputs given in equations (1) and (2). With the servo
gain set at 20, as shown in figure 10, it was found that the self-adaptive
loop had very good characteristics. The gain was held constant during
the remainder of the study.

O O Fi=

Analog computer studies were made to evaluate the effect of ¥y -
(i.e., fixed values of percent time limiting) on the mean-square error
of the system €2, for various values of limiting apmy,. Figure 12 shows
a block diagram of the system, including the self-adaptive loop, that .
was used during these studies.

The results of the computer studies are given in figure l3(a). The
curves show multivalued characteristics very similar to those discovered
by Booton, et al. (ref. 9). However, it is apparent from a cursory
inspection of figure l3(a) that on each curve there is a minimum point
(minimum rms error) which is determined by a particular percent time
limiting for each value of acceleration limiting, ayy. These minimum
points were used to determine the curve plotted in figure 13(b) which
shows how the missile acceleration limit, apyr, should vary as a function
of percent time limiting. The results shown in figure l3(b) seem almost
intuitive. Certainly it is obvious that as the limit level, ayg, is
reduced to a level approaching the magnitude of the input signals, it is
necessary for the system to be operating in the saturated region nearly
100 percent of the time in order to follow the inputs. This implies that
the percent time limiting should increase as ayg decreases. It should
be noted however, that limits were placed on the variations of the Wiener
filter parameters to keep the variation within the design values given in
figure 11. Since the system operates at the extreme values part of the
time, it is obvious that slightly different results would be obtained if
the design values were extended by an order of magnitude.

In order to use the results of figure l3(b), it is necessary to
measure the acceleration capability at each point in the flight regime.
The only practical way the author knows to do this is to measure external
environment. This suggests that in order to obtain the optimum performance
it would be necessary to relax the design requirement of adaptive control.
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However, if an estimate of the average apy, can be made for a typical
missile attack, then figure 13(b) can be used to determine the optimum
percent time limiting, and measurement of dynamic pressure will not be

mandatory.
Simulation Tests With Varying Ky

So far only fixed missile gain, KM, has been considered in both the
analytic design phase and in the analog computer studies which have becn
described. The problem of a changing missile gain, KM(t) has been
analyzed only on the analog computer. The computer tests involving KM(t)
(see fig. 14) werc made with the statistical inputs given by equations (l)
and (2} with KM(t) decreasing linearly with time over a 20 to 1 range in
a 2-minute interval. Typical time history curves of the system error €,
the Wiencr filter adjusting signal w, and the missile acceleration aypy,
are shown in figure 15. The fact that the error e does not increase
greatly near the end of the run indicates that the gain variation is slow
enough for the problem to be considered essentially time invariant. Thus
the time average error (€¢) for one run is essentially the same as the
ensemble average error (E) for a number of runs. (The reader will recog-
nize this as an assumption that is often made in missile studies.) No
claim is made as to the conformity to actual missile gain variation for
this particular gain changing program. However, it was necessary to
prescrt the guidance system with the same inputs and the same variation
of KM(t) in order to compare results in the following studies. Analog
tests were made to determine how the rms error, €, varied with the rms
design acceleration, ayp, (i.e., D(s) was held fixed at various design
values) when Kp(t) changed by a factor of 20 to 1. The results of the
tests are shown in figure 16(a). For this particular variation of Km(t)
there is an optimum modified Wiener design at ayp * 5g. This corresponds
to a g 1limit of roughly 10g or the mid-range of the KM(t) variation.

Tests were also made to determine the effect of percent time
limiting when KM(t) varied over the 20 to 1 range; D(s) was allowed to
vary to maintain a fixed percent time limiting. The results are shown
in figure 16(p) . Note the minimum rms error point of the curves occurs
at approximately 20-percent time limiting. Since 20-percent time limiting
corresponds to an optimum g 1imit of 10g in figure l3(b) and the average
g limit (based on the chosen KM(t)) is also 10g, it is apparent that
optimum response can be obtained if the average g limit is known. This
means that there is the practical problem of anticipating the average g
1imit during a missile flight. Selecting the average g limit should be
no more difficult than estimating the statistical character of the inputs
to the missile. The average g 1imit can probably be chosen to correspond
to the mid-point in the flight regime in most cases.

The curves shown in figure 6 are quite heuristic in nature because
they show that under certain conditions performance better than that
obtained with Newton's modified Wiener system is possible. In other words,
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there should be a curve that is tangent to the curves of figure 6 and
corresponds to all possible ayp designs from ayp = 10g down to 1-1/2g.
The curve would like to the left of the dashed curveS in figure 6. Analog
computer studies show that with Ky fixed and with the percent time
limiting chosen to correspond to the g 1limit according to figure 13(b),
the performance is better than that with an optimum modified Wiener
system. The curve in figure 17 labeled "optimum percent time limiting"
shows this performance, and for comparison purposes the 4.56-percent time
limiting (or optimum Newton modified Wiener) curve is presented. Tests
were also made with the g l1imit fixed (KM = constant) and the percent
time limiting fixed at 20 percent. This performance curve in figure 17
shows that 20-percent time limiting is better than L4.56 percent over the
range.

It is also interesting to conslder the operation of the missile system
when it is assumed that dynamic pressure is measured. Such operation means
that design requirements have been relaxed so that adaptive performance is
not required. However, it also means that the system can now operate with
the percent time limiting changing as a function of g limit level
(i.e., dynamic pressure). In other words, the miss distance (rms error)
that can now be expected is that described by the optimum percent time
limiting curve of figure 17 rather than the 20-percent time limiting curve.
Analog computer tests show that the rms error, &, is 22.41 feet rms under
these conditions when KM(t) varies in the manner previously considered.
The average g 1limit, it should be recalled is 10g in this case. The
value of € =22.41 feet rms compares quite closely to the value of
€ =23.0k feet rms which is obtained when ayy, is fixed at 10g and the
optimum percent time limiting of 20 percent is used (see fig. 13(b)).

Thus it can be seen that two closely related designs have evolved
from this investigation. One is an adaptive type design that depends upon
the designer's being able to estimate the average g limit level of the
beam-rider missile during a typical attack. The other is an "optimum"
design whose response depends upon maintaining the optimm percent time
limiting at all times. In both cases, performance, as measured by rms
error (or rms miss distance), is superior to that realized by Newton's
modified Wiener design. Figure 18 shows the block diagrams of the two
systems. It should be noted that a percent time limiting computer (detec-
tor plus servo) is the heart of both designs. Furthermore the Wiener
filter, D(s), has variable coefficients that are adjusted by the percent
time limiting computer in both cases.

INPUT VARTATTIONS

In all of the preceding discussions, the inputs have remained fixed
at the original design values. Roberts (ref. 10) has shown that control

®The dashed curve corresponds to optimum Newton modified Wiener
system performance.
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systems with a certain class of randomly varying inputs can be made
self-optimizing. In general, his method depends upon synthesizing the
Wiener filter part of the design in such a manner that the spectral
density of one of the state variables of the system has the same form as
the noise when the system is operating in an optimum manner. The method
works very well for simple systems where the signal and/or noise change
slowly with time. Roberts also shows that his method leads to a compli~
cated function that is extremely difficult to realize in the case of the
problem we have been studying.

Any change in the inputs, either in magnitude or shape of power
spectral density, will change the miss distance of an optimum system;
that is, the system will be optimum only for the exact inputs that were
assumed at the start of the design. Analog computer studies were made
to determine the effects of changing target and noise magnitudes. The
results are shown in figure 19. The "solid" curves show rms errors for
a modified Wiener design of &yp = 58 when it is subjected to a 10g limit,
and inputs other than those for which it was designed. For the tests
the Wiener filter coefficients were held constant at the 5g design values.
The dashed curves show the results of computer tests which were made with
amy, = 10g, a fixed 20-percent time limiting, and the Wiener filter, D(s),
changing to maintain the 20-percent time limiting. The design values of
input magnitudes are oy(s) = 100 and ®yTyT(s) = 1.00 per unit.

A study of figure 19 reveals that the performance of the self-adaptive
system is superior to that of a system which has a fixed modified Wiener
filter except in the region where both the target and noise inputs are
much greater than the design values. A study of time histories of the
adaptive system variables (which is not presented here) shows that the
performance of the system could be improved in this region by forcing the
system to operate with more than 20-percent time limiting. Hence it is
obvious that the self-adaptive design presented can adapt itself to some
input magnitude changes as well as changes in missile gain.

CONCLUDING REMARKS

A method of designing a self-adaptive missile guidance system has
been presented. To illustrate the technique, the design has been effected
for a simplified beam-rider missile where the inputs are assumed to be
known in a statistical sense only, the missile is g limited, and the
gain of the missile varies by a factor of 20 over its flight envelope.
It has been shown that the dynamic performance (i.e., percent time limiting)
can be measured internally and the measurements, in turn, can be used to
adjust the controller (modified Wiener filter) so that the missile per-
forms in an optimum manner over its flight envelope.

The initial design phase has been accomplished by the analytical
method suggested by Newton's modified Wiener theory. Analog computer
studies have been used in the subsequent design phases to show that the
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performance criterion of the missile (minimum mean-square error) changes
throughout the flight envelope as a function of the missile's acceleration
capability. Computer studies have also shown that the percent of time
that missile acceleration limiting occurs can be measured and that optimum
values of percent time limiting are associated with each value of limit
level,

It has been shown that the guidance system can be made self-adaptive
in the case where one particular value of percent time limiting can be
chosen as a reference. This reference signal can then be compared to the
measured value of percent time limiting and the difference between these
two signals can be used to drive a servo which, in turn, adjusts the Wiener
filter. In this study, the reference value of percent time limiting was
chosen to correspond to the mid-range limit level. Analog studies were
also made to determine the performance of a beam-rider missile where it
was assumed that dynamic pressure, q, could be measured; that is, the
self-adaptive Teature was dropped and 1t was assumed that the reference
signal to the percent time limiting detector varied as a function of
external environment measurements, In this case, it was shown that
optimum performance (minimum €2) could be maintained throughout the entire
flight envelope.

Studies were also made to determine the effect of input magnitudes
on system performance. The results of these studies show that the adaptive
loop adjusts the system to give good operation when the input magnitudes
are varied from 25 percent to as much as 225 percent of the design values.

It is believed that the concept of using percent time limiting to
adjust the controller in a guidance system is a significant contribution
to, and may extend the usefulness of, classical design methods.

Further research areas may include the application of this concept
to the design of homing missile guidance systems in which some of the
parameters are time varying. The concept may also be useful in designing

certain optimum nonlinear systems which are subject to deterministic inputs.

Ames Research Center
National Aercnautics and Space Administration
Moffett Field, Calif,, July 26, 1960
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APPENDIX

BASTS FOR INTUITIVE FEELING THAT CONTROL OF RMS VALUE OF A

SIGNAL COMES CLOSE TO CONTROLLING PEAK VALUE

The intuitive feeling that control of the rms value of a signal comes
close to controlling the peak value is based on the following reasoning.
First, the assumption is made that the input signal to a limiter is
Gaussian and has a zero mean value. This can be represented by the
Gaussian distribution function shown in figure 20.

The command acceleration signal to the missile is ay, and o 1is
the standard deviation or the rms valuc of the missile acceleration
(o = @yp). For example, if we select the value of ayp for design pur-
poses so that it is equal to aML/E, the area under the curve from -2¢
to +2¢ will be a measure of the percent of the time that the missile
guidance will be operating in the linear or unsaturated range. For calcu-
lation purposes it is somewhat more convenient to determine the value of
the integral from -o to -20 and from +20 to +w; that is, it is
easier to calculate the percent of the time that the acceleration required
of the missile exceeds the available acceleration. This expression is
defined by

ap  exp - (apR/2) o

Integrals of this type are tabulated extensively in mathematical and
engineering literature (ref. 11). For this example, ayp = aML/Q, evalua-
tion of the above equation yields a value of 0.0456. This means that if
the design value of rms missile acceleration, apyp, is chosen to be one-halfl
the maximum acceleration available, apmy,, then the probability that the
required acceleration (aM) will exceed the limit level (aNﬁ) is C.0450; or,
in other words, the system will be operating in the saturated range only
4.50 percent of the time. This small percentage of time during which
saturation is expected has lead to the aforementioned intuitive feeling
that control of the rms value of a signal comes close to controlling

the peak value.

Equation (Al) is valid only in the case of a cascade system. By
rationalization only (through use of the central limit theorem) can equa-
tion (Al) be extended to the feedback system which is of interest in this
report. Hence, percent time limiting calculations for feedback systems
that are based on equation (Al) are rough approximations only.
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TABIE I.- SUMMARY OF OPTIMUM NEWTON MODIFIED

WIENER SYSTEM PARAMETERS

Design Missile rms design acceleration, ayp, &
perameter | 4 g 2.0 5.0 10.0 | Wiener
Kp 0.4969 | 1.1526| 3.2492 | L.4506 | 7.1366
P, L,1561 |2.4768] 1.3198 | 1.1051| .8601
P, 3.5073 [2.5826] 1.8019 | 1.6287 | 1.4143
d, 3787 1 .2738 .98u9 0350 | O
a, 1.h542 11,2580 .6829 | .h3ho | O
q, 2.7606 [2.8680] 2.7389 | 2.0495 | 2.4756

17
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Figure 1l.- Typlcal beam-rider guldance system.
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(a) Classical representation.
(b) High-gain autopilot design.
(¢) vVariable limit level configuration.

Figure 2.- Missile autopilot block diagrams.
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Figure 3.- Beam-rider control system with variable limit level autopilot.
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Figure 4.- Block diagram of beam-rider missile control system with
modified Wiener filter and variable limit level autopilot.
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Figure 5.- RMS error for various Newton modified Wiener beam-rider
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Figure 7.- Root loeci of four optimum modified Wiener systems.
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Figure 8.- Composite root loci plot of closed-loop poles and zeros of
the four optimum systems.
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Figure 9.- Composite root loci plot of the dominant poles of the four
optimum systems.
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Figure 10.- Percent time limiting self-adaptive loop.
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(b) Acceleration limit versus optimum percent time limiting.

Figure 13.- Concluded.
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Figure 15.- Analog computer time history plots of €, w, and ay for
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Figure 16.- RMS error variations when missile gain decreases linearly
with time.
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Figure 18.- Block diagrams of beam-rider missile guidance systems.
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Figure 19.- Variation of rms error with input magnitudes.

Figure 20.- Gaussian distribution function.
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